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Topologically Convex Sets and Fixed Point Theory

By

G. Stephen Jones¥*

In the study of topological invariants associated with convex sets
it is important that large classes of sets which are topologically equi-
valent to convex sets be identified. This is particularly true in inves-
tigations which are concerned with the fixed point property associated
with continuous functions on convex sets. It is the main purpose of this
paper to identify a class of topologically convex sets and to use this
identification to obtain several interesting results in the theory of

fixed points.

For a linear topological space X and subsets A and B of X,
we denote by A, A, O(A), and A \ B the closure of A, interior of
A, boundary of A, and the set of all elements in A not in B
respectively. If S(: X and x and y are elements of X, then S
is said to be linearly connected relative to x and y when for each
z in 38, the set SN PZ is connected where PZ is the 2-dimensional
plane containing x, y, and z. Our principel result concerning topolo-
gically convex sets is embodied in the following theorem.

Theorem 1. Iet A and B be two convex sets in a real linear
topological space X such that A N B 1s bounded. If relative to some
x, in A°N3(B) and x in B° n a(a), A°n3(B) and B N 3(A)
linearly comnected sets, then there exists a one-to-one continuous function

*

This research was supported 1n part by the United States Alr Force
through the Air Force Office of Scientific Research, Office of Aerospace
Research, under Contract No. AF 49(638)-382, in part by the U. S. Army,
Army Ordnance Missile Command under Contract DA-36-034-QGRD-351k RD, in
part by the National Aeronautics and Space Administration under Contract
No. NASr-103, and Office of Naval Research under contract Nonr-3%93(00).
Reproduction in whole or in part is permitted for any purpose of the
United States Government.



o .

f which maps A onto A\ BO and f 1s a homeomorphism on AO.
Furthermore, if p 1is the support function of A N B defined relative
to some interior point, then for arbitrary € >0, f may be defined to
be the identity map outside the set {x : p(x) <1 + €].

We recall that the Tychonoff Fixed Polint theorem states that every
compact convex subset of a locally convex linear topological space has the
fixed point property, [1]. Before proving Theorem 1 let us make a straight-
forward application of it together with the Tychonoff theorem in proving
the three essentially equivalent theorems stated below. For this purpose
we define the linear extension of a subset A of a linear topological
space X as the smallest linear subspace of X containing A. If
AC YC X, then (A~7Y)° and 3(A ~ Y) denote the interior and boundary
of A respectively in the relative topology of Y. We denote a mapping

as compact if its range is contained in a compact set.

Theorem 2., Iet X be a locally convex linear topological space,
A a closed convex subset of X, and F a continuous mapping of A into
itself. Let the closed convex hull of F(A) be compact, let B be a
convex body in the linear extension Y of A, and relative to some x
in (A~1Y)°Nn3B~Y and x, in (B~Y)°nodA~Y let
(A~Y)°n3B~Y and (B~ Y)° N (A ~ Y) be linearly connected. If
FEN (B~Y)°)C A\ (B~7Y)° then F has a fixed point in A \ (B ~ Y)°.

1

Theorem 3. Iet X ©be a complete locally convex linear topological
space, A a closed convex subset of X, and F a compact mapping of A
into itself. Iet B be a convex body in the linear extension Y of A,
and relative to some x; in (A~Y)°NndB~7Y) and x, in
(B~Y°N3A~Y let (A~Y)°nd(B~7Y) and (B~Y)°n3A~Y)
be linearly comnected. If F(A\ (B~ 7Y)°)C A\ (B~ Y)°, then F bhas a
fixed point in A \ (B ~ Y)°.
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Theorem 4. Iet X be a locally convex linear topological space,
A a compact convex subset of X, and F a continuous mapping of A
into itself. Iet B be a convex body in the linear extension Y of
A, and relative to some x; in (A~1)°ndB~7Y and x, in
(B~7Y)°n A ~7Y) let (A~ N°Nn3B~Y and (B~ )% 3(A ~ Y) be
linearly connected sets. If FAN (B~ Y)°) C A\ (B~ Y)°, then
F has a fixed point in A \ (B ~ ¥)°.

Proofs. Iet us suppose the hypotheses of Theorem 4. As subsets of
the linear space Y, clearly A and B satisfy the hypothesis of
Theorem 1. Hence there exists a one-to-one continuous function f which
maps A onto A\ (B ~ Y)O. Since A 1s compact f 1is a homeomorphism
on A and the mapping £™'Ff 1is a continuous mapping of A into A.
Hence using the Tychonoff theorem we have that there exist x* in A such
that

f‘lFf(x*) = X*.
But, of course, it follows that
F(f(x¥)) = £(x*),

where f(x*) 1is contained in A \ (B ~ Y)O, so Theorem L4 is proved.

Now let H denote the closed comvex hull of F(A). If X is a
complete locally convex linear topological space and F(A) is compact,
then the fact that H 1is compact is proved in [2]. Hence the hypotheses
of either Theorem 2 or Theorem 3 imply that H 1is compact. Replacing A
by H we observe easily that the hypotheses of Theorem 4 are satisfied,
so the validity of Theorem 2 and Theorem 3 is established.

These theorems bring out the usefulness of Theorem 1 in providing a
technique whereby a set may be partitioned and the question of fixed points
considered on its component parts. As an example of a situation calling

for such a technique, let us suppose that the zero element O of X 1s
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contained in the set A, and it is important to know whether or not

F has a nontrivial fixed polnt in A. If a neighborhood of O with
the properties of B can be constructed, then it is clear from our
results that such a fixed point exists. Situations of this type asso-
clated with establishing the existence of nontrivial periodic solutions
of functional-differential equations are discussed in [3].

Iet us now use Theorem 1 to prove a fixed point theorem which shows
that, in a rather general sense, all the fixed points of a mapping of a
convex set Into itself can not be isolated boundary points and repulsive.

Theorem 5. Iet S be a closed convex subset of a complete locally
convex linear topologicael space X, let F be a compact mapping of S
into X with F(8)( S, and let A = [xi :i=1,2, ..., n} be a finite
get of fixed points under F contained in 9Jd(S). Let
‘z? = [Ni :1=1,2y..., n} be a set of bounded convex neighborhoods of
the origin and let Py, p2, ceey P denote their respective support func-
tions defined relstive to the origin. F has a fixed point in S \ A
if one of the following conditions is satisfied.

(a) There exist 5 >0 such that for each x, in A,
pi(F(x) - F(xi)) zp,(x - xi)l's when pi(x - %;) 1is sufficiently small.

(b) There exist X, >0 such that for 0 <\ s, and N, in 4[,
°n B(S) i1s linearly connected relative to xi and a point in
in A, pi(F(x) - F(xi)) 2 p(x - x;) when

(AN, )
B(XNi) n 8°, and for each Xy

pi(x - xi) is sufficiently small.

In preparation to proving Theorem 5, Theorem 1, and other results to
follow, it is convenient to introduce some additional notations. If =x 1s
an element of a linear topological space X and A is a subset of X,

then C(x, A) denotes the cone with vertex at x generated by A. That

is,

c(x, A) ={y:y=(1~-r)x+2xrz, z in A, A >0}.



For x and y in X,

%y = {z :z=(1-A)x+2ry, 0<ar<1},

o]
o
I

the closure of '}8{,

{z :2=(1-A)x+ry, -o<o<<n},

LY
—~
"
N
]

and

r(xy) = {z : 2= (1 -N)x +\y, A ZO0}.

The following lemma will be useful in the proof of Theorem 5 when
it is supposed that condition (a) is satisfied.

Iemma 1. Iet A Dbe a convex set contained in a locally convex linear
topological space X and let K be a bounded convex neighborhood of the
origin. Let X, be contained in J(A) and suppose x is a point in

Then there

1

a(xo +X) nA°. Forall 1 >0 let x(n) = a(xo + 1K) N i;il.
exist positive constants 4 and € such that

Cx(n), x, +enk) N AC (x, + 1K) N A,

forall 1 in (0, n,l.

Proof. Iet us decribe the ray r(xlxo) by the formula
g\ = (1 - N)xg + M, » 20

Since A 1is convex, obviously ¢(2) = 2, - %X =X, 1s contained in
X \A. Iet p denote the support function of K defined relative to

the origin, and for arbitrary x in X and a >0 let

N(x, a) = {y : y =x +u, p(u) <al.



-6-

Clearly there exist a constant r such that N(xl, r)C A and
N(xe, r)C X\A Iet 0<g< p(xl - xo) and let ¢ be a constant
such that ¢ z 6(p(x; - x,) + p(x, - xl))/r. Let Xz = ux) + (1 - u)x

and X, = p X + (1 - p)x, where pp(xl-xo)=q. Iet y =% tu

2
when p(u) = pr. Then

1
Y= %z +us=p(xy +2u) o+ (1-p)x,

and z = x, + &u is contained in N(xl, r). Hence y 1is contained in
z x, and consequently in A. Tt follows that N(x5 , ur)C A, and in a
similar fashion i1t may be shown that N(xh, ur) C X \ A. Furthermore , 1t

is clear that

1} A°,

A

x : x

<4
I

(1 - ")"o + Ny, ¥ in N(x5, ur), 0 <A

and

<
]

1 {x :x=(1-A)Xg tANy, ¥y in N(xh, pr), 0<as1}C X \ A

et C = C(xo, N(x),, ur)), C; = C(xj, N(x_, 1/c) and

v

v, = (x :x=(1- x)x5 +Ay, ¥y in N(xo, ve), 25/},

Clearly ¢ >5 p(xl - xo)/ r implies
L <
¢ P 170

for A z 5/4, and considering an arbitrary element x = (1 - )\)x5 + Ay
in v, we have

x = (1 -n)(=x, + 2x) +Ax, +y) = (N -1)x, + (2 - N)x, + Ay,
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where p(yl) s n/c. Letting p=A -1, we have x = px) + (1 - p)xo + Ay

Hence if p(xyl) S pur, then x is contained in CO. But by definition
p(y;) s n/e, sofor rz5/h it follows that

POv;) = an/e < (N - D)ro/p(x; - x ) = pur,
and consequently V,( C_. Iet w be an arbitrary point in 3(C ) N 3(c,).
Then o = (1 - x)x3 + x(xo + ye) where 1 - n/c <A < E and p(ya) = n/e.
Hence we have

o=x_+ (1 -Nu(x; -x)) +N,,

where

A

p((1 - Mu(x,-x) +Ay,) = (1-A)up(x)x.) + AB(v,)

IA

(1-A)n + an/e < 7.

Hence every ray r(xiy), y in N(x, n/c), intersects C, N N(x_, n).
Since it is easily varified that such rays must remain in C0 once they

have entered, 1t follows that they intersect B(N(xo, n)) outside A

which, of course, implies that C, N A (N(x,, n) N A. It is clear that
N(xo, n/e) =x,  + 2 K, N(xo, n) =x  + 7K, and

X3 =x(m) =9(x, + nK) N iox‘l. Therefore, letting € = l/c, n, = p(x; - x.),
we have

C(x(n), x5 + €nkK) N AC (x, + 1K) N A,
and our proof is complete.

Proof of Theorem 5. Preceding directly now with our varification

of Theorem 5, we assume condition (a) is satisfied. Clearly there exist
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B > 0 such that the sets N§ =B Ni’ i=1, 2, ..., n are mutually
disjoint and do not cover S. Iet s Dbe an element in s° \ % ﬁ§ and
for 1=1,2, ..., n, let u =3d(x, +N) e and 1=1

v (n) = 3(x, + n¥f) N 4xX,. From lemm 1 it is clear that for 7 suffi-

ciently small there exists € >0 such that

Clvy(n), x4 + €n N§) N sC (xy +aN)ns (1)

for 1=1,2, ..., n. Using condition (&) we know that there exist
n, >0 such that if n =7, and pi(x - %;) $n, then

p,(F(x) - F(x;)) 2 20, (x - x,). (2)

Hence defining > i=1,2, ..., n to be the support functions of the
sets C(vi(ql), x; + nlNi) it is clear from (1) and (2) that for
qi(x - xi) sufficiently small,

qi(F(x) = F(xi)) 2 qi(x - xi)‘

On the other hand we observe that the sets C(vi(nl), x; *+ nlN;) are

linearly connected relative to the points x, and vi(nl). Hence replacing
the sets Ni’
c(vi(nl), x; + n;N¥) we have that condition (b) is met. Therefore,

i=1,2, ..., n 1in our hypothesis of Theorem 5 by the sets

Theorem 5 will be proved once it is shown to be valld when condition (b)
is satisfied.

let H denote the closed convex hull of F(S), and let Y denote
the linear extension of H. As we have observed previously the compact-
ness of F(S) implies H 1is compact and obviously F(H) C H. Assuming

condition (b) is satisfied it is clear that we may chose € to be such
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<€ for each x in A implies

1 i

that pi(x - xi)

p,(F(x) - F(x,)) = p,(F(x) - x;) 2 p,(x - x,),

and the sets (Bi ~¥Y)° n3(E ~ Y) bhave mutually disjoint closures and
are linearly connected relative to x, and points in B(Bi ~Y)n (H~7Y)°,

when

€
1
B, = (x pi(x - xi) < ETJ.

Since the compactness of H implies H 1is bounded, we can easily verify
that the linear connectivity of (Bi ~Y)° N 3(H ~ Y) implies the linear
connectivity of (H ~ Y)° n B(Bi ~ Y) relative to the same points. ILetting

A = {x : 61/2 < pi(x - xi) e, x in H},

it is clear that F(A,)C H\ B, 1=1,2, ..., n.

iJ
n

Now let F¥ ©Dbe the mapping defined on H \ U Bi’ in the following way:

i=1

ingi’ and

F*(x) = F(x) 1if F(x) 1s contained in H \

Fx(x) = a(Bi ~Y) N é%?;B

if F(x) 1is contained in Bj. Since the Bi's are convex it is clear

that F¥ 1is well defined and the fact that F(Ai)(: H\ Bi implies F*
n
has the same fixed points in H \ U Bi as F. We observe that for each p:.L

n O
end arbitrary x in H\ UB, iat
i=1

N N
lim {yF(y) : pi(y -x) =€, y in H} = xF(x).
€ -0
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Suppose F(x) 1is contained in B:L' Then for an arbitrary neighborhood

N(F*(x), €) defined relative to P; there exist a neighborhood
N(x, v) defined relative to p, such that

Pl
M= (yF(y) : py(y -x) sv, y in H} N 3(B; ~ Y) C N(F*(x), €).
Since F*(N(x, v)N H) 1is obviously contained in M it follows that

F*(N(x, v)n ) C N(F*(x), €).

n
Hence it is clear that TF¥* 1is continuous on H \ U Bi'
i=1
Now let N, Noy vees N, be open convex neighborhoods of Bl’
Bz, cesy Bn respectively with mutually disjoint closures. By Theorem 1
for each Bi’ there exists a homeomorphism fi on H in Y which maps
H onto H \ Bi and fi is the identity map outside Ni' If n
g=ff_ ... f , then clearly g 1is a homeomorphism of H onto H\ UB
12 n 121 12

and g-lF*g is a continuous mapping of H onto H. Hence using the
Tychonoff theorem we have that there exists x* 1in H such that

g'lF*g(x*) = X%,

But, of course, this implies F*(g(x*)) = g(x*), and since g(x*) is

n
in H\ UB, we also have that
3=1 T

F(g(x*)) = g(x*).

Therefore, g(x*) 1is a fixed point under F contained in H \ A, and
our theorem is established.

A set SC X 1is called a star body if there exists a point X, in
s8° with respect to which S 1s a star set and if each ray r(xoy) inter-
sects 3(S) in at most one point. The notion of a star body will be used
in proving some of the lemmas to follow which are preparatory to proving

Theorem 1.

Iemma 1. Iet X be a locally convex linear topological space and

let SC X be a bounded star body with respect to & point x, in s°.
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Then there exists a unique positive continuous function A on X\ [xl]
and a unique continuous mapping ® : X \ [xl]» a(s) such that for each
x in X\ {x},

x=(1- x(x))xl + Ax)o(x). (3)

Proof. Consider an arbitrary point x in X \ [xl}. Since the ray
r(xlx) must intersect J(S) at a unique point, we may denote this

point by w(x). Obviously then x may be expressed by the formula
x = (1 - a(x))xy + A(x)(x),

where x(x) is a unique positive number. Hence to prove our lerma we

have only to show that A and ® are continuous at x.

We may assume without loss of generality that X = 0, and our
formuls reduces to x = A(x)o(x). Iet N(0O) be an arbitrary bounded
neighborhood of the origin and let N, (0) contained in N(0) be a con-
vex neighborhood of the origin such that w(x) is not in Nl(O). Let
the neighborhood N2(O) of the origin be convex and such that
N,(0) C Nj(0). wWe let x, in r(0 w(x)) be such that x, +a N,(0)
is contained in w(x) + N2(0) and is disjoint from S for some fixed
a > 0. Consider C(0, w(x) + b Né(x)), b >0, and C(o(x),
an(x) + a NE(O))' Now x in C(0, w(x) + D N2(O)) implies
x = tlo(x) + byl], where £ >0 and y, is contained in Ng(o). Hence

M
]

(2 - go(x) + (1 - &)(2w(x)) + by,

(1 - )a(x) + p(2n(x)) + £by,,

where p = £ - 1. Now by boundedness there exist u > O such that

(1 - na(x) + n(a(x)) + &b N,(0) C o(x) + N,(0)
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for all 17 such that |n| s p and |b| s p. Hence letting

b = min{p, au/t} we have that x = (1 - p)w(x) + p(x2 + % yl) which is
contained in C(w(x), 2w(x) + a NE(O)) whenever p >y which, of

course, implies r(O(w(x) + by;)) intersects B(Nl(o)) inside C(w(x),
2o(x) +a Ny(0)) n (X \ 5). Therefore C(0, w(x) + b N,(0)) must inter-
sect 9(S) inside N (0). It follows that w(y) not contained in

o(x) + N(0) implies w(y) 1is not contained in C(0, w(x) + b NQ(O)) and
consequently y = A(y)o(y) 1s not contained in C(0, w(x) + b N2(O))_
Clearly there must exist ¢ >0 such that x + cb N,(0) C c(0, w(x) + b N,(0)),
so y 1is not in x + cb N2(O). Hence y in x + cb N2(O) implies (y)
is in w(x) + N(0) and the continuity of w follows.

Now let N (0) C So be a convex neighborhood of the origin and let
p denote the support function of N (0) defined relative to 0. For

arbitrary & >0 we may choose NM(O) C (2 NB(O ) n (- 5(O)) such
that y in x + Nh_(o) implies a)(y) is contained in
(o(x) TGT ) N (w(x) m 5(O We observe that

Yy =% = My)o(y) - Mx)o(x)

((y) = A(=x))o(y) + A=) (o(y) - ox))

and

(AM(y) - 2x)o(y) =¥ - x + Mx)(o(x) - o(y)).

Hence
IA(y) =A@ < [My) - r(x)] plol(y))
s max(p(+[(y~x) + r(x)(o(x) - o(y))D],

and it follows that for y in x + Nu(o)
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IAMy) - A(x)| <.
Therefore A 1is also continuous and the proof of our lemma is complete.

Iemma 2. Iet X be a locally convex linear topological space.
Every closed and bounded star body contained in X 1is topologically

equivalent to a closed and bounded convex body.

Proof. Iet S be a closed and bounded star body in X with
respect to a point X in SO. Since X 1is locally convex there exist
a closed and bounded convex body K such that SC K°. By Iemma 1
each x in X \ [xl} may be uniquely expressed as

x = (1 = ax))x, + rx)o(x),

1
where 3 1s a continuous positive functionsl defined on X \ [xl} and
o 1is a continuous mapping of X \ [xl} onto 9d(K). For each x 1in

S we define

X =X

1
q(x) = Xl + azmzxj))

where x 1s in r(xlcn(x)) and qa{(w(x)) is the positive functional such
that

(1 - a(w(x)))xl + aw(x))w(x) = o(s) n r(xlu;(x)).

Since K 1s convex and S 1is a star body it follows that ¢ and cp"l
are well defined. We easily observe that ¢(S) = K. Since afw(x))
is bounded away from zero and continuous by virtue of Lemma 1 it follows

that @ 1s continuous. cp"l is given by the formula
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o (y) = x, + o)y - x,),

for y in K, and its continulty follows from the continuity of «
and ®. Hence we have that ¢ 1s a homeomorphism mapping S onto K
and our proof is complete.

One observes that Lemma 2 yields an immediate yet perhaps useful
corollary to the Tychonoff Fixed Point Theorem which may be stated as
follows.

Theorem 6. Every compact subset of a locally convex linear topo-
logical space which is a star body in its linear extension has the fixed
point property.

Proof. Since Iemma 2 implies every compact subset which is a
star body in 1ts linear extension is topologically equivalent to a compact
convex subset, this theorem follows trivially from the Tychonoff theorem.

Iemma 3. Iet A and B be two convex subsets of a real linear
topological space X such that A N B is bounded and let
& = 3(A) 0 3(B). Relative to x, in A° N 3(B) and x_ in B° N 3(A)
let A° N 3(B) and B%° n 3(A) be linearly connected and let
C = C(xy, BN d(A)). Then there exist a one-to-one continuous function ¢
which meps A \ c° onto A \ B° and which maps A \ (c°U A) onto
AN (8° UA) topologically.

Proof. For each y in A let

¢y = (x: x=(1-%)x +rz, & in xy, 1 20},

and let Py denote the two dimensional plane containing Cy. We shall
show that
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C=ufc, iy in A} (4)

We begin by letting P; and P; denote the two half pla:x_es composing
P\ t(x y) where P}j contains x,. Clearly Cos Bys Pys and P;

are convex. Iet 2z ©be an arbitrary point in 'f:y‘. Since

r(xlz)('r) = (1 - 'r)xl + 1z is contained in A° N B for 7 <1l and

3(B) n Py N A°(C P:;, it is clear that for some unique T 2 1, r(xlz)('rl)
is c-o-ritained in 3(A). Since r(xlz)('r) for T 21 must be contained
in P; and (9(A) N Py) \ BC P;, we have that r(xlz)‘('rl) is contained
in 3(a) n B°. Hence r(xlz) C ¢ and we may conclude therefore that

cy( C forall y in A. That is, U[Cy: y in a)(C c.

Now let x be an arbitrary point of C. For some 1 > 0,
x = (1 - 'q)xl = mMu, where u is contained in 3(A) n B°. If u is
contained in C(xo, A), then obviously x 1is contaired in Cy for some
y in A. If u is not contained in C(x_, A), let P be the two
dimensional plane determined by X5 ¥, and u. Clearly there is a
unique are in 3(A) N P, NB from x  toa point y in A which con-
tains u, and )?1_11— must intersect [(xoy). Since q\luc A° and
A°n t(xoy) = @ it follows that ;c:ﬁ intersects Q;? which, of course,
implies u and consequently x is contained in Cy' Thus we have
cCu [Cy : ¥y in A} which together with the reverse inclusion obtained
in the previous paragraph establishes (4).

Our next step is to construct & one~to-one mapping ¢ which maps
AN Bo onto A \ Co. To this end we consider an arbitrary but fixed
point x, in %X an arbitrary element v in A N o(B) and let

2 o 1’
Pv be the two dimensional plane determined by x and v. Since

21 *1,

there is a unique arc in Jd(B) N P, NA from x;, toapoint y in A

1

which contains v, we have P, = Py. Let P; and P;* denote the two

half planes composing Py \ z(xly) where x is contained in P;' Since

v is contained in -I;;* it follows that r(izv) must intersect l(xly)
once and only once. It is clear that the correspondence y <—> Cy is
one-to-one, so we have that each ray r(xav) must intersect the set

3(C) N A once and only once. Now let K be a closed and bounded convex
set such that A N B 1s contained in kK°. Tt is clear from Lemma 1 that

that each x in X \ {x } may be uniquely expressed as
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x = (1 - a(x))x, + r(x)o(x),

2
where )\ 1s a continuous positive functional defined on X \ {x2} and

® 1is & continuous mapping of X \ (x,} onto 3(K N A). For each x
in (E\c%) NK we define

®x) = o(x) + %l—: afo(x } (x - o(x)), (5)

Blw{x

where x 1s in r(xe(m(x)) and a(w(x)) and B(w(x)) are positive
functional such that

(1 - alo(x)))x, + alw(x))a(x) = 3(B) N r(xmw(x))
and

(1 - Blw(x)))x, + Blo(x))o(x) = 3(c) N rxm(x)).

on (AN (X\NK)) we define ¢(x) =x. Clearly the fact that ¢ and
cp'l are well defined follows immediately from the convexity of B and
X and the unique point of intersection property we have established be-
tween J(C) and any ray r(xzm(x)). We also easily observe that

o(E N\ c®) =1\ B

Now consider the functionmal vy defined by the formula

r(x) = pgeEl, (6)

for x in A\ (C° UA). We have that A N B 1s a bounded convex body
and by (4) it is clear that A NC is a bounded star body. Hence using
Iemms 1 we have that «a, B, and ® are continuous. Choosing x in
AN\ (BO UA) there exists a neighborhood N(0) of the origin such that
for y in x + N(0), PB(w(y)) <1 -5 when & is come positive con-
stant. Thus for y in x + N(0) we have
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(1-plo(x) Nalo(x)) - alw(y))) + (1-alw(x)Nplw(y))-plalx)))
(1 - Blw(y)) (L - Blo(x)))

lr(y) - v(x)] =

IA

Lalo(x)) - al(y)] + l8E) - sE)].
o)

Hence it is clear that the continuity vy at x follows from the continuity
of a, B, and . We have, therefore, that y is continuous on
AN (c%n A), and since y(x) does not vanish on this domain, the func-

tional ¢f(x) =1 / v(x) is also continuous. In addition, we observe that
0 = y(x) <1,

on A\ (c° UA), since 1 >alw(x)) > Blw(x)) > o.
Returning to our mapping ¢ we have that the continuity of ¢
on (AN (c°ua)) nk® follows immediately from the continuity of w

and y. Also cp"l on (AN (B° UA)) n K° is expressed by the formula

7 y) = o) + LX) - o), (7)

so the continuity of ¢+ on (A \ (c° UA)) n X° follows from the
continuity of w and ¢. Now consider an arbitrary point x in

AU (En3(K)) and let y be an arbitrary point in A \ C°. We have

oy) - ox) =oy) + v(¥) (¥ - o(y)) - olx)

@)
(1 - 7(¥y))(y) - o)) + vyl -x),

if y isin (ANCc°) n K, and

oy) - ox) =y - x,
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if y isin AN (X \ K). Since 0 s y(y) <1, it is clear that the
continuity of ¢ at x follows immediately from the continuity of w
at x. Hence we have that ¢ is continuous on (A \ ¢°) N K. The
extension of the continuity of ¢ to the remainder of A\ c® follows
trivially, so we have that ¢ maps A \ c® onto A \ B® continuously.
Now let y be contained in A N 3(K) and consider the transforma-

tion cp_l. For arbitrary z in A \ B° we have

1z) - ¢ = w(z) + t(z)(z - o(z)) - aly)

(1 - t(z))((z) -o(y)) + t(z)(z - ¥),

if y is in (A \ (8° UA)) N X, and
-1 -1
¢ (z) -9 (y) =2z -y,

if y is in AN (X \ K). Tt is easily verified that there exist a
neighborhood in y on which ¢§ 1s bounded so it is clear that the
continuity of cp'l at y ‘follows from the continuity of w at Y.
Thus cp-l 1s continuous on (A \ (B® UA)) N K and the extension to
the remainder of A \ (B® UA) follows trivially. We may conclude,
therefore, that ¢ 1s a homeomorphism on AN (C0 UA) and the proof

of our lemma 1s complete.

Iemme 4. Iet X, A, B, and C be defined as in ILemma 2. There
existsa homeomorphism ¢ mapping AN CO onto A.

Proof. et x, A, Cy’ and P_ be defined as in the proof of
Iemoe 2. Let X, be a point in (A° \ B) n £(xyx,) end let
Cc* = c(x3, BN d(A)). By the boundedness of A N B and the convexity
of A, obviously every ray in C* must intersect J(A) at a unique

u

point. For arbitrary u in °n 3(A) we consider the segment Xy
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in C*. It was established in the proof of Iemma 2 that wu must be
contained in Py for some y in A. Since 'E;El is contained in
Py it follows that r(xBu) is contained in Py. Since x3 is an
exterior point of Cy and u 1is an interior point it follows that
X_u must intersect o(C) at a unique point.

2
By Ilemma 1 we may express each x 1in C¥ \ {x5} uniquely as

x = (1= p)x, + uv(x),

where |1 1s a continuous positive functional on C* \ {xj} and v 1is
a continuous mapping of C* \ {xj} onto BN 3(A). We define y(x) on
c* \ ¢° by the formula

X - X

V() = x, + st (9)

where x 1is in r(xav(x)) and 7(v(x)) 1s the positive contimuous func-

tional such that
(1 = n(v(x)))x, + n(v(x))v(x) = 3(C) n r(x,v(x)).

On A \ C*¥ we define V¥(x) = x. Clearly v and w'l are well defined
by virtue of the unique point of intersection property established between
E;;?ET and J(C) in the previous paragraph. Also we can easily verify
that y(& \ ¢°) = A.

Since 7n(v(x)) is continuous, bounded, and bounded away from zero
on c* \ c° it is clear from (9) that ¥ and w'l are continuous on
C*O \ CO and ©*° nA respectively. Iet x be an arbitrary point in
d3(c*) N A and let y be arbitrary in A \ c°. We have

y-x2

¥(y) - ¥(x) =x, + TG T

= C=5ryy) (p - ¥) + (7 = %),



if y is in C*, and
V(y) - ¥(x) =y - x,

if y 1is in A \ C*. Hence it is clear that the continuity of ¥ at

x follows from the continuity of 1 and v and the fact that

n(v(x)) = 1. Hence V¥ 1is continuous on C* \ c® and it follows trivi-
ally that V¢ is continuous on all of AN Co. In a completely analogous
fashion we may verify the continuity of w‘l on all of A. Hence V

is a homeomorphism mapping A \ CO onto A and our proof is complete.

Theorem 1. Iet A and B be two convex sets in a real linear
topological space X such that A N B 1s bounded. If relative to some
x, in A° N 3(B) and x, in B 0 3(A), A°n 3(B) anda B°n 3(a) are
linearly connected sets, then there exists a one-to-one continuous function
f which maps A onto A\ BO and f 1s a homeomorphism on A?. Further-
more if p is the support function of A N B defined relative to some
interior point, then for arbitrary € >0, f my be defined to be the

identity map outside the set (x : p(x) <1 + €}.

Proof. Iet C be defined as in ILemma 3. Clearly K, as speci-
fied in the proof of Iemma 3, may be chosen such that

K={x:p(x) =1+¢e].

Hence ¢ as constructed in the proof of Iemma 3 1s a one-to-one con-
tinucus mapping of AN Co onto A \ BO which is a homeomorphism on
AO and is the identity map outside K. Also V¥ as constructed in the
proof of Iemma 4 is a homeomrophism mapping ANC® onto A and in
the identity map outside K. Therefore, f = qw_l is a one-to-one
continuous mapping of A onto A\ Bo which is a homeomorphism on Ao

and the identity map on AN K, so the proof of our theorem is complete.
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As a final remark we mention that Theorem 1 is one of several
similar theorems concerned with topologically convex sets which have
very interesting applications in the theory of fixed points. For
example, a theorem of the same type is presented in [4] and used to
establish an asymptotic fixed point theorem which is very useful when
investigating periodic systems in Banach space.
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